Construction of self-adaptive moving mesh methods by hodograph transformation

Baofeng Feng

School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley

Presentation at
International Workshop on Integrable Systems Mathematical Analysis and Scientific Computing

National Taiwan University, Taipei

October 17, 2015

Outline

- A class of nonlinear wave equations with loop, cuspon and breather solutions
- Integrable discretization and integrable self-adaptive moving mesh methods
- Construction of self-adaptive moving mesh methods by hodograph transformation
- Summary and further topics

Collaborators:
K. Maruno (Waseda University), Y. Ohta (Kobe University),
T. Matsuo (The Univ. of Tokyo), W.-H. Sheu (National Taiwan University)

Motivation

Structure-preserving and moving mesh numerical methods

- Multi-symplectic integrator

Motivation

Structure-preserving and moving mesh numerical methods

- Multi-symplectic integrator
- Invariant-preserving integrator

Motivation

Structure-preserving and moving mesh numerical methods

- Multi-symplectic integrator
- Invariant-preserving integrator
- Integrability-preserving methods

Motivation

Structure-preserving and moving mesh numerical methods

- Multi-symplectic integrator
- Invariant-preserving integrator
- Integrability-preserving methods
- Moving mesh methods
- Self-adaptive moving mesh methods

Motivation

Structure-preserving and moving mesh numerical methods

- Multi-symplectic integrator
- Invariant-preserving integrator
- Integrability-preserving methods
- Moving mesh methods
- Self-adaptive moving mesh methods
B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, 2004).
D. Furihata and T. Matsuno, Discrete Variational Derivative Method (CRC Press, Boca Raton, FL, 2011)
W. Huang and R. D. Russell, Adaptive Moving Mesh Methods (Springer, FL, 2011).

Integrable numerical schemes to soliton equation

Semi-discrete NLS equation (Ablowitz-Ladik lattice) to the Nonlinear Schrödinger (NLS) equation $\mathrm{i} q_{t}+\boldsymbol{q}_{\boldsymbol{x} \boldsymbol{x}}+\mathbf{2}|\boldsymbol{q}|^{2} \boldsymbol{q}=\mathbf{0}$,

$$
\mathrm{i} \frac{d q_{k}}{d t}+\frac{q_{k+1}-2 q_{k}+q_{k-1}}{h^{2}}+\left|q_{k}\right|^{2}\left(q_{k+1}+q_{k-1}\right)=0
$$

where $\boldsymbol{q}_{\boldsymbol{k}} \approx \boldsymbol{q}(\boldsymbol{k} \boldsymbol{h}, \boldsymbol{t})$. D.A. Karpeev, C.M. Schober, Math. and Compt. Simul. 56 (2001) 1456
C.M. Schober, Phys. Lett. A 259 (1999) 1401.

Fully discrete sine-Gordon equation $\boldsymbol{u}_{\boldsymbol{x} t}=\sin \boldsymbol{u}$

$$
\frac{1}{a b} \sin \frac{u_{k+1}^{l+1}-u_{k+1}^{l}-u_{k}^{l+1}+u_{k}^{l}}{4}=\sin \frac{u_{k+1}^{l+1}+u_{k+1}^{l}+u_{k}^{l+1}+u_{k}^{l}}{4}
$$

where $\boldsymbol{u}_{\boldsymbol{k}}^{l} \approx \boldsymbol{u}(\boldsymbol{k a}, \boldsymbol{l b})$.
M. J. Ablowitz, B. M. Herbst, and C. M. Schober, Phys. Rev. Lett. 71, 2683 (1993).
M. J. Ablowitz, B. M. Herbst, and C. M. Schober, J. Comput. Phys. 126, 299 (1996), 131, 354 (1997).

The Camassa-Holm equation and its short wave model

The Camassa-Holm equation

$$
\begin{aligned}
& u_{t}+2 \kappa^{2} u_{x}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \\
& m_{t}+2 m u_{x}+u m_{x}=0, \quad m=\kappa^{2}+u-u_{x x}
\end{aligned}
$$

R. Camassa, D.D. Holm, Phys. Rev. Lett. 71 (1993) 1661 Inverse scattering transform, A. Constantin, (2001)

The Camassa-Holm equation and its short wave model

The Camassa-Holm equation

$$
\begin{aligned}
& u_{t}+2 \kappa^{2} u_{x}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} \\
& m_{t}+2 m u_{x}+u m_{x}=0, \quad m=\kappa^{2}+u-u_{x x}
\end{aligned}
$$

R. Camassa, D.D. Holm, Phys. Rev. Lett. 71 (1993) 1661 Inverse scattering transform, A. Constantin, (2001)
Short wave limit: $\boldsymbol{t} \rightarrow \boldsymbol{\epsilon} \boldsymbol{t}, \boldsymbol{x} \rightarrow \boldsymbol{x} / \boldsymbol{\epsilon}, \boldsymbol{u} \rightarrow \boldsymbol{\epsilon}^{2} \boldsymbol{u}$
The Hunter-Saxton equation

$$
u_{t x x}-2 \kappa^{2} u_{x}+2 u_{x} u_{x x}+u u_{x x x}=0
$$

Hunter, \& Saxton (1991): Nonlinear orientation waves in liquid crystals Hunter \& Zheng (1994): Lax pair, bi-Hamiltonian structure FMO (2010): Integrable semi- and fully discretizations

The Degasperis-Procesi equation and its short wave model

The Degasperis-Procesi equation

$$
\begin{gathered}
u_{t}+3 \kappa^{3} u_{x}-u_{t x x}+4 u u_{x}=3 u_{x} u_{x x}+u u_{x x x} \\
m_{t}+3 m u_{x}+u m_{x}=0, \quad m=\kappa^{3}+u-u_{x x}
\end{gathered}
$$

A. Degasperis, M. Procesi, (1999)

Degasperis, Holm, Hone (2002)
N-soliton solution, Matsuno (2005)

The Degasperis-Procesi equation and its short wave model

The Degasperis-Procesi equation

$$
\begin{gathered}
u_{t}+3 \kappa^{3} u_{x}-u_{t x x}+4 u u_{x}=3 u_{x} u_{x x}+u u_{x x x} \\
m_{t}+3 m u_{x}+u m_{x}=0, \quad m=\kappa^{3}+u-u_{x x}
\end{gathered}
$$

A. Degasperis, M. Procesi, (1999)

Degasperis, Holm, Hone (2002)
\boldsymbol{N}-soliton solution, Matsuno (2005)
Short wave limit:

$$
\begin{gathered}
u_{t x x}-3 \kappa^{3} u_{x}+3 u_{x} u_{x x}+u u_{x x x}=0 \\
u_{t x}-3 \kappa^{3} u+\frac{1}{2}\left(u^{2}\right)_{x x}=0
\end{gathered}
$$

- Reduced Ostrovsky equation, L.A. Ostrovsky, Okeanologia 18, 181 (1978).
- Vakhnenko equation, V. Vakhnenko, JMP, 40, 2011 (1999)

The short pulse equation

$$
u_{x t}=u+\frac{1}{6}\left(u^{3}\right)_{x x}
$$

- Schäfer \& Wayne(2004): Derived from Maxwell equation on the setting of ultra-short optical pulse in silica optical fibers.
- Sakovich \& Sakovich (2005): A Lax pair of WKI type, linked to sine-Gordon equation through hodograph transformation;
- Brunelli (2006) Bi-Hamiltonian structure, Phys. Lett. A 353, 475478
- Matsuno (2007): Multisoliton solutions through Hirota's bilinear method
- FMO (2010): Integrable semi- and fully discretizations.

Complex short pulse equation

Complex short pulse equation

$$
q_{x t}+q+\frac{1}{2}\left(|q|^{2} q_{x}\right)_{x}=0
$$

- The complex short pulse equation, which can be derived from Maxwell equation, is more natural and appropriate than short pulse equation in describing the propagation of the ultra-short pulses. It is an analogue of the NLS equation for the ultra-short pulses.
- It is integrable and and has exact N-envelop soliton solution.
- B.-F (2015) Physica D 297, 62-75

Coupled complex short pulse equation

Coupled complex short pulse equation

$$
\begin{aligned}
& q_{1, x t}+q_{1}+\frac{1}{2}\left(\left(\left|q_{1}\right|^{2}+B\left|q_{2}\right|^{2}\right) q_{1, x}\right)_{x}=0 \\
& q_{2, x t}+q_{2}+\frac{1}{2}\left(\left(\left|q_{2}\right|^{2}+B\left|q_{1}\right|^{2}\right) q_{2, x}\right)_{x}=0
\end{aligned}
$$

- The parameter \boldsymbol{B} is related to the ellipticity angle $\boldsymbol{\theta}$ as

$$
B=\frac{2+2 \sin ^{2} \theta}{2+\cos ^{2} \theta}
$$

- For a linearly birefringent fiber $(\boldsymbol{\theta}=\mathbf{0}), B=\frac{2}{3}$, for a circularly birefringent fiber $(\theta=\pi / \mathbf{2}), B=\mathbf{2}$. Only when $B=\mathbf{1}$, it is integrable.

The generalized sine-Gordon equation

The generalized sine-Gordon equation

$$
u_{x t}=\left(1+\sigma \partial_{x x}\right) \sin u, \quad \sigma= \pm 1
$$

- Proposed by A. Fokas through a bi-Hamiltonian method (1995)
- Matsuno gave a variety of soliton solutions such as kink, loop and breather solutions (2011)
- For $\sigma=1$, under the short wave limit $\bar{u}=u / \epsilon, \bar{x}=(x-t) / \epsilon, \bar{t}=\epsilon t$, it converges to the short pulse equation.
- Under the long wave limit $\overline{\boldsymbol{u}}=\boldsymbol{u}, \overline{\boldsymbol{x}}=\boldsymbol{\epsilon \boldsymbol { x }}, \overline{\boldsymbol{t}}=\boldsymbol{t} / \boldsymbol{\epsilon}$, it converges to the sine-Gordon equation.

The link of the short pulse equation to the coupled dispersioless equation

$$
u_{x t}=u+\frac{1}{2}\left(u^{2} u_{x}\right)_{x}, \quad \partial_{x}\left(\partial_{t}-\frac{1}{2} u^{2} \partial_{x}\right) u=u
$$

It can be easily shown that

$$
\left(\sqrt{1+u_{x}^{2}}\right)_{t}-\left(\frac{1}{2} u^{2} \sqrt{1+u_{x}^{2}}\right)_{x}=0
$$

The link of the short pulse equation to the coupled dispersioless equation

$$
u_{x t}=u+\frac{1}{2}\left(u^{2} u_{x}\right)_{x}, \quad \partial_{x}\left(\partial_{t}-\frac{1}{2} u^{2} \partial_{x}\right) u=u
$$

It can be easily shown that

$$
\left(\sqrt{1+u_{x}^{2}}\right)_{t}-\left(\frac{1}{2} u^{2} \sqrt{1+u_{x}^{2}}\right)_{x}=0
$$

Letting $\rho=\left(1+u_{x}^{2}\right)^{1 / 2}$, we can define a hodograph transformation

$$
d y=\rho d x-\frac{1}{2} u^{2} \rho d t, \quad d s=d t
$$

or

$$
\partial_{x}=\rho^{-1} \partial_{y}, \quad \partial_{t}=\partial_{s}+\frac{1}{2} u^{2} \rho^{-1} \partial_{y}
$$

which leads to

$$
\left\{\begin{array}{l}
u_{y s}=\rho u \\
\rho_{s}+\frac{1}{2}\left(u^{2}\right)_{y}=0
\end{array}\right.
$$

Lax pairs for the SP and the CD equations

The Lax pair for the CD equation

$$
\begin{gathered}
\Psi_{y}=U \Psi, \quad \Psi_{s}=V \Psi, \\
U=-\mathrm{i} \lambda\left(\begin{array}{cc}
\rho & u_{y} \\
u_{y} & -\rho
\end{array}\right), \quad V=\left(\begin{array}{cc}
\frac{i}{4 \lambda} & -\frac{u}{2} \\
\frac{u}{2} & -\frac{i}{4 \lambda}
\end{array}\right)
\end{gathered}
$$

The compatibility condition $\boldsymbol{U}_{\boldsymbol{t}}-\boldsymbol{V}_{\boldsymbol{x}}-\boldsymbol{U} \boldsymbol{V}+\boldsymbol{V} \boldsymbol{U}=\mathbf{0}$ gives the CD equation.
Then we get the Lax pair for the SP equation through the hodograph transformation $\partial_{y}=\rho \partial_{x}, \partial_{s}=\partial_{t}-\mathbf{1} / 2 u^{2} \partial_{x}$

$$
\begin{gathered}
\Psi_{x}=U \Psi, \quad \Psi_{t}=V \Psi \\
U=-\mathrm{i} \lambda\left(\begin{array}{cc}
1 & u_{x} \\
u_{x} & -1
\end{array}\right) \\
V=\left(\begin{array}{cc}
\frac{i}{4 \lambda}-\frac{i \lambda}{2} u^{2} & -\frac{i \lambda}{2} u^{2} u_{x}-\frac{u}{2} \\
-\frac{i \lambda}{2} u^{2} u_{x}+\frac{u}{2} & -\frac{i}{4 \lambda}+\frac{i \lambda}{2} u^{2}
\end{array}\right)
\end{gathered}
$$

Bilinear equations of the short pulse equation

Theorem

The bilinear equations

$$
D_{s} D_{y} f \cdot g=f g, \quad D_{s}^{2} f \cdot f=\frac{1}{2} g^{2}
$$

where

$$
D_{s}^{n} D_{y}^{m} f \cdot g=\left.\left(\frac{\partial}{\partial s}-\frac{\partial}{\partial s^{\prime}}\right)^{n}\left(\frac{\partial}{\partial y}-\frac{\partial}{\partial y^{\prime}}\right)^{m} f(y, s) g\left(y^{\prime}, s^{\prime}\right)\right|_{y=y^{\prime}, s=s^{\prime}}
$$

give the short pulse equation

$$
u_{x t}=u+\frac{1}{2}\left(u^{2} u_{x}\right)_{x}
$$

through the hodograph and dependent variable transformations

$$
x=y-2(\ln f)_{s}, \quad t=s, \quad u=\frac{g}{f}
$$

Proof of the Theorem (I)

$$
\begin{aligned}
& D_{y} f \cdot g=f_{y} g-f g_{y}, \quad D_{s} D_{y} f \cdot g=f_{s y} g-f_{s} g_{y}-f_{y} g_{s}+f g_{s y}, \\
& \frac{D_{s} D_{y} f \cdot g}{f^{2}}=\left(\frac{g}{f}\right)_{s y}+2(\ln f)_{y s} \frac{g}{f} \\
& D_{s}^{2} f \cdot f=2 f_{s y} f-2 f_{s} f_{y}, \quad \frac{D_{s}^{2} f \cdot f}{f^{2}}=2(\ln f)_{s s} \\
& \left\{\begin{array}{l}
\left(\frac{g}{f}\right)_{s y}=\left(1-2(\ln f)_{y s}\right) \frac{g}{f} \\
2(\ln f)_{s s}=\frac{1}{2} \frac{g^{2}}{f^{2}}
\end{array}\right.
\end{aligned}
$$

Proof of the Theorem (I)

$$
\begin{aligned}
& D_{y} f \cdot g=f_{y} g-f g_{y}, \quad D_{s} D_{y} f \cdot g=f_{s y} g-f_{s} g_{y}-f_{y} g_{s}+f g_{s y}, \\
& \frac{D_{s} D_{y} f \cdot g}{f^{2}}=\left(\frac{g}{f}\right)_{s y}+2(\ln f)_{y s} \frac{g}{f} \\
& D_{s}^{2} f \cdot f=2 f_{s y} f-2 f_{s} f_{y}, \quad \frac{D_{s}^{2} f \cdot f}{f^{2}}=2(\ln f)_{s s} \\
& \qquad\left\{\begin{array}{l}
\left(\frac{g}{f}\right)_{s y}=\left(1-2(\ln f)_{y s}\right) \frac{g}{f}, \\
2(\ln f)_{s s}=\frac{1}{2} \frac{g^{2}}{f^{2}}
\end{array}\right.
\end{aligned}
$$

Let $u=g / f, \rho=1-2(\ln f)_{y s}$, we have

$$
\left\{\begin{array}{l}
u_{y s}=\rho u, \\
\rho_{s}+\frac{1}{2}\left(u^{2}\right)_{y}=0
\end{array}\right.
$$

Proof of the Theorem (II)

Recall the hodograph transformation

$$
\begin{gathered}
x=y-2(\ln f)_{s}, \quad t=s \\
\frac{\partial x}{\partial y}=1-2(\ln f)_{y s}=\rho \quad \frac{\partial x}{\partial s}=-2(\ln f)_{s s}=-\frac{1}{2} u^{2}
\end{gathered}
$$

or

$$
\partial_{y}=\rho \partial_{x}, \quad \partial_{s}=\partial_{t}-\frac{1}{2} u^{2} \partial_{x}
$$

So the coupled dispersionless equation becomes

$$
\partial_{x}\left(\partial_{t}-\frac{1}{2} u^{2} \partial_{x}\right) u=u
$$

which is exactly the short pulse equation.

Multi-soliton solution to the short pulse equation

The short pulse equation admits multi-soliton solution

$$
f=\left|\begin{array}{cc}
A & I \\
-I & B
\end{array}\right|_{2 N \times 2 N}, g=\left|\begin{array}{ccc}
A & I & \Phi^{T} \\
-I & B & 0^{T} \\
0 & C & 0
\end{array}\right|_{(2 N+1) \times(2 N+1)}
$$

where the elements defined respectively by

$$
\begin{gathered}
a_{i j}=\frac{1}{2\left(p_{i}^{-1}+p_{j}^{-1}\right)} e^{\xi_{i}+\xi_{j}}, \quad b_{i j}=\frac{\alpha_{i} \alpha_{j}}{2\left(p_{j}^{-1}+p_{i}^{-1}\right)} \\
\Phi=\left(e^{\xi_{1}}, e^{\xi_{2}}, \cdots, e^{\xi_{N}}\right), \quad C=-\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right)
\end{gathered}
$$

with $\xi_{i}=p_{i} y+\frac{1}{p_{i}} s+\xi_{i 0}$

Integrable semi-discrete short pulse equation

Theorem

By discrete hodograph transformation $x_{k}=2 k a-2\left(\ln f_{k}\right)_{s}, \quad t=s$ and dependent variable transformations $\boldsymbol{u}_{\boldsymbol{k}}=\frac{g_{k}}{f_{k}}$, the bilinear equations

$$
\left\{\begin{array}{l}
\frac{1}{a} D_{s}\left(g_{k+1} \cdot f_{k}-g_{k} \cdot f_{k+1}\right)=g_{k+1} f_{k}+g_{k} f_{k+1} \\
D_{s}^{2} f_{k} \cdot f_{k}=\frac{1}{2} g_{k}^{2}
\end{array}\right.
$$

give an integrable semi-discrete short pulse equation

$$
\left\{\begin{array}{l}
\frac{d}{d s}\left(u_{k+1}-u_{k}\right)=\frac{1}{2}\left(x_{k+1}-x_{k}\right)\left(u_{k+1}+u_{k}\right) \\
\frac{d}{d s}\left(x_{k+1}-x_{k}\right)=-\frac{1}{2}\left(u_{k+1}^{2}-u_{k}^{2}\right)
\end{array}\right.
$$

Proof of the semi-discrete SP equation (1)

Denote $f_{k}=f(k a, s), g_{k}=\boldsymbol{g}(\boldsymbol{k a}, \boldsymbol{s})$, and consider

$$
\begin{aligned}
& D_{s} D_{y} f \cdot g=f_{s y} g-f_{s} g_{y}-f_{y} g_{s}+f g_{s y}, \\
& \rightarrow \frac{f_{k+1, s}-f_{k, s}}{a} g_{k}-f_{k, s} \frac{g_{k+1}-g_{k}}{a} \\
& \quad-g_{k, s} \frac{f_{k+1}-f_{k}}{a}+\frac{g_{k+1, s}-g_{k, s}}{a} f_{k} \\
& =\frac{1}{a}\left(g_{k+1, s} f_{k}-f_{k, s} g_{k+1}-g_{k, s} f_{k+1}+g_{k} f_{k+1, s}\right) \\
& =\frac{1}{a} D_{s}\left(g_{k+1} \cdot f_{k}-g_{k} \cdot f_{k+1}\right)
\end{aligned}
$$

we could propose

$$
\left\{\begin{array}{l}
\frac{1}{a} D_{s}\left(g_{k+1} \cdot f_{k}-g_{k} \cdot f_{k+1}\right)=g_{k+1} f_{k}+g_{k} f_{k+1} \\
D_{s}^{2} f_{k} \cdot f_{k}=\frac{1}{2} g_{k} g_{k}
\end{array}\right.
$$

Proof of the semi-discrete SP equation (II)

$$
\left\{\begin{array}{l}
\frac{1}{a} D_{s}\left(g_{k+1} \cdot f_{k}-g_{k} \cdot f_{k+1}\right)=g_{k+1} f_{k}+g_{k} f_{k+1}, \\
D_{s}^{2} f_{k} \cdot f_{k}=\frac{1}{2} g_{k}^{2},
\end{array}\right.
$$

The second bilinear equation can be rewritten as

$$
\left(\ln f_{k}\right)_{s s}=\frac{1}{4} \frac{g_{k}^{2}}{f_{k}^{2}}=\frac{1}{4} q_{k}^{2}
$$

From the hodograph transformation, we have

$$
x_{k+1}-x_{k}=2 a-2\left(\ln \frac{f_{k+1}}{f_{k}}\right)_{s}
$$

it immediately follows

$$
\frac{d}{d s}\left(x_{k+1}-x_{k}\right)=-\frac{1}{2}\left(q_{k+1}^{2}-q_{k}^{2}\right)
$$

Proof of the semi-discrete SP equation (III)

Dividing both sides by $f_{k+1} f_{k}$, the first bilinear equations can be calculated out by

$$
\left(\frac{g_{k+1, s}}{f_{k+1}}-\frac{g_{k, s}}{f_{k}}\right)-\frac{g_{k+1} f_{k, s}-g_{k} f_{k+1, s}}{f_{k+1} f_{k}}=a\left(\frac{g_{k+1}}{f_{k+1}}+\frac{g_{k}}{f_{k}}\right),
$$

which is recast into

$$
\left(\frac{g_{k+1}}{f_{k+1}}-\frac{g_{k}}{f_{k}}\right)_{s}=\left(a-\left(\ln \frac{f_{k+1}}{f_{k}}\right)_{s}\right)\left(\frac{g_{k+1}}{f_{k+1}}+\frac{g_{k}}{f_{k}}\right) .
$$

With the use of discrete hodograph and dependent variable transformations, we have

$$
\begin{equation*}
\frac{d}{d s}\left(q_{k+1}-q_{k}\right)=\frac{1}{2}\left(x_{k+1}-x_{k}\right)\left(q_{k+1}+q_{k}\right) \tag{1}
\end{equation*}
$$

Integrable self-adaptive moving mesh method for the short pulse equation

We apply the semi-implicit Euler scheme to the semi-discrete short pulse equation

$$
\left\{\begin{array}{l}
\frac{d}{d s}\left(u_{k+1}-u_{k}\right)=\frac{1}{2} \delta_{k}\left(u_{k+1}+u_{k}\right) \\
\frac{d}{d s}\left(x_{k+1}-x_{k}\right)=-\frac{1}{2}\left(u_{k+1}^{2}-u_{k}^{2}\right)
\end{array}\right.
$$

as follows

$$
\left\{\begin{array}{l}
p_{k}^{n+1}=p_{k}^{n}+\frac{1}{2} \delta_{k}^{n}\left(u_{k+1}^{n}+u_{k}^{n}\right) \Delta t \\
\delta_{k}^{n+1}=\delta_{k}^{n}-\frac{1}{2}\left(\left(u_{k+1}^{n+1}\right)^{2}-\left(u_{k}^{n+1}\right)^{2}\right) \Delta t
\end{array}\right.
$$

where $p_{k}^{n}=u_{k+1}^{n}-u_{k}^{n}, \delta_{k}^{n}=x_{k+1}^{n}-x_{k}^{n}$.

Integrable self-adaptive moving mesh method for the short pulse equation

We apply the semi-implicit Euler scheme to the semi-discrete short pulse equation

$$
\left\{\begin{aligned}
\frac{d}{d s}\left(u_{k+1}-u_{k}\right) & =\frac{1}{2} \delta_{k}\left(u_{k+1}+u_{k}\right), \\
\frac{d}{d s}\left(x_{k+1}-x_{k}\right) & =-\frac{1}{2}\left(u_{k+1}^{2}-u_{k}^{2}\right),
\end{aligned}\right.
$$

as follows

$$
\left\{\begin{array}{l}
p_{k}^{n+1}=p_{k}^{n}+\frac{1}{2} \delta_{k}^{n}\left(u_{k+1}^{n}+u_{k}^{n}\right) \Delta t \\
\delta_{k}^{n+1}=\delta_{k}^{n}-\frac{1}{2}\left(\left(u_{k+1}^{n+1}\right)^{2}-\left(u_{k}^{n+1}\right)^{2}\right) \Delta t
\end{array}\right.
$$

where $p_{k}^{n}=u_{k+1}^{n}-u_{k}^{n}, \delta_{k}^{n}=x_{k+1}^{n}-x_{k}^{n}$.

- Although the semi-implicit Euler is a first-order integrator, it is symplectic which is an appropriate for the Hamiltonian system
- The mesh is evolutive and self-adaptive, so we name it self-adaptive moving mesh method.

The complex short pulse equation and the complex coupled dispersionless equation

$$
q_{x t}+q+\frac{1}{2}\left(|q|^{2} q_{x}\right)_{x}=0
$$

gives

$$
\left(\sqrt{1+|q|_{x}^{2}}\right)_{t}+\left(\frac{1}{2}|q|^{2} \sqrt{1+|q|_{x}^{2}}\right)_{x}=0 .
$$

This leads to a hodograph transformation by defining $\rho=\sqrt{1+|q|_{x}^{2}}$. As a result, we obtain the so-called complex coupled dispersionless equation

$$
\left\{\begin{array}{l}
q_{y s}=\rho q \\
\rho_{s}+\frac{1}{2}\left(|q|^{2}\right)_{y}=0
\end{array}\right.
$$

Konno K, Kakuhata H. J Phys Soc Jpn 1995, 64, 2707; 1996;65:713.

Bilinear equations of the complex short pulse equation

Theorem

The complex short pulse equation

$$
q_{x t}+q+\frac{1}{2}\left(|q|^{2} q_{x}\right)_{x}=0
$$

can be derived from bilinear equations

$$
D_{s} D_{y} f \cdot g=f g, \quad D_{s}^{2} f \cdot f=\frac{1}{2}|g|^{2}
$$

through the hodograph and dependent variable transformations

$$
x=y-2(\ln f)_{s}, \quad t=-s, \quad q=\frac{g}{f}
$$

Integrable semi-discrete complex short pulse equation

Theorem

The semi-discrete analogue of the complex short pulse equation

$$
\left\{\begin{array}{l}
\frac{d}{d s}\left(q_{k+1}-q_{k}\right)=\frac{1}{2}\left(x_{k+1}-x_{k}\right)\left(q_{k+1}+q_{k}\right), \\
\frac{d}{d s}\left(x_{k+1}-x_{k}\right)=-\frac{1}{2}\left(\left|q_{k+1}\right|^{2}-\left|q_{k}\right|^{2}\right)
\end{array}\right.
$$

is decomposed into bilinear equations:

$$
\left\{\begin{array}{l}
\frac{1}{a} D_{s}\left(g_{k+1} \cdot f_{k}-g_{k} \cdot f_{k+1}\right)=g_{k+1} f_{k}+g_{k} f_{k+1} \\
D_{s}^{2} f_{k} \cdot f_{k}=\frac{1}{2} g_{k} \bar{g}_{k}
\end{array}\right.
$$

through discrete hodograph transformation and dependent variable transformations $x_{k}=2 k a-2\left(\ln f_{k}\right)_{s}, \quad t=-s, \quad q_{k}=\frac{g_{k}}{f_{k}}$.

Integrable semi-discrete coupled complex short pulse equation

Theorem

The semi-discrete coupled complex short pulse equation

$$
\left\{\begin{array}{l}
\frac{d}{d s}\left(q_{1, k+1}-q_{1, k}\right)=\frac{1}{2}\left(x_{k+1}-x_{k}\right)\left(q_{1, k+1}+q_{1, k}\right), \\
\frac{d}{d s}\left(q_{2, k+1}-q_{2, k}\right)=\frac{1}{2}\left(x_{k+1}-x_{k}\right)\left(q_{2, k+1}+q_{2, k}\right), \\
\frac{d}{d s}\left(x_{k+1}-x_{k}\right)=-\frac{1}{2} \sum_{j}\left(\left|q_{j, k+1}\right|^{2}-\left|q_{j, k}\right|^{2}\right),
\end{array}\right.
$$

is decomposed into bilinear equations:

$$
\left\{\begin{array}{l}
\frac{1}{a} D_{s}\left(g_{k+1}^{(i)} \cdot f_{k}-g_{k}^{(i)} \cdot f_{k+1}\right)=g_{k+1}^{(i)} f_{k}+g_{k}^{(i)} f_{k+1}, \quad i=1,2 \\
D_{s}^{2} f_{k} \cdot f_{k}=\frac{1}{2}\left(\left|g_{k}^{(1)}\right|^{2}+\left|g_{k}^{(2)}\right|^{2}\right)
\end{array}\right.
$$

through discrete hodograph transformation and dependent variable transformations $x_{k}=2 k a-2\left(\ln f_{k}\right)_{s}, t=-s, q_{i, k}=\frac{g_{k}^{(i)}}{g_{k}}$.

Integrable self-adaptive moving mesh method for the complex short pulse equation

We apply the semi-implicit Euler scheme to the semi-discrete complex short pulse equation

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(q_{k+1}-q_{k}\right)=\frac{1}{2} \delta_{k}\left(q_{k+1}+q_{k}\right), \\
\frac{d}{d t}\left(x_{k+1}-x_{k}\right)=-\frac{1}{2}\left(|q|_{k+1}^{2}-|q|_{k}^{2}\right),
\end{array}\right.
$$

as follows

$$
\left\{\begin{array}{l}
p_{k}^{n+1}=p_{k}^{n}+\frac{1}{2} \delta_{k}^{n}\left(q_{k+1}^{n}+q_{k}^{n}\right) \Delta t \\
\delta_{k}^{n+1}=\delta_{k}^{n}-\frac{1}{2}\left(\left(|q|_{k+1}^{n+1}\right)^{2}-\left(|q|_{k}^{n+1}\right)^{2}\right) \Delta t
\end{array}\right.
$$

where $p_{k}^{n}=q_{k+1}^{n}-q_{k}^{n}, \delta_{k}^{n}=x_{k+1}^{n}-x_{k}^{n}$.

Bilinearization to the CH equation

Theorem (F-Maruno-Ohta (2008))

The CH equation

$$
m_{t}+2 m u_{x}+u m_{x}=0, \quad m=\frac{1}{c}+u-u_{x x}
$$

is derived from the bilinear equations

$$
\begin{align*}
& \left(D_{y} D_{s}+\frac{1}{c} D_{x}+2 c D_{t}\right) g \cdot h=0 \tag{2}\\
& \left(\frac{1}{2 c} D_{y}+1\right) g \cdot h=f f \tag{3}\\
& \left(\frac{1}{2} D_{y} D_{s}-1\right) f \cdot f=-g h \tag{4}
\end{align*}
$$

through a hodograph transformation $x=2 c y+\ln \frac{g}{h}, \quad t=s$ and dependent variable transformation $u=\left(\ln \frac{g}{h}\right)_{s}$

Proof of the Theorem (I)

$$
\begin{align*}
& (\ln g h)_{y s}+\left(\left(\ln \frac{g}{h}\right)_{y}+2 c\right)\left(\left(\ln \frac{g}{h}\right)_{t}+\frac{1}{c}\right)-2=0, \tag{5}\\
& \frac{1}{2 c}\left(\ln \frac{g}{h}\right)_{y}+1=\frac{f f}{g h} \tag{6}\\
& (\ln f)_{y s}-1=-\frac{g h}{f f} \tag{7}
\end{align*}
$$

Proof of the Theorem (1)

$$
\begin{align*}
& (\ln g h)_{y s}+\left(\left(\ln \frac{g}{h}\right)_{y}+2 c\right)\left(\left(\ln \frac{g}{h}\right)_{t}+\frac{1}{c}\right)-2=0 \tag{5}\\
& \frac{1}{2 c}\left(\ln \frac{g}{h}\right)_{y}+1=\frac{f f}{g h} \tag{6}\\
& (\ln f)_{y s}-1=-\frac{g h}{f f} \tag{7}\\
& \left(\ln \frac{g h}{f f}\right)_{y s}+\left(\left(\ln \frac{g}{h}\right)_{y}+2 c\right)\left(\left(\ln \frac{g}{h}\right)_{t}+\frac{1}{c}\right)=2 \frac{g h}{f f} \tag{8}
\end{align*}
$$

Let $\boldsymbol{\rho}=\boldsymbol{g} \boldsymbol{h} / \boldsymbol{f}^{\mathbf{2}}$, differentiating Eq. (6) with respect to s

$$
\begin{equation*}
\frac{1}{2 c} u_{y}=-\frac{\rho_{s}}{\rho^{2}} \tag{9}
\end{equation*}
$$

Combining (8) with (6)

$$
\begin{equation*}
(\ln \rho)_{y s}+\frac{2 c}{\rho}\left(u+\frac{1}{c}\right)=2 \rho \tag{10}
\end{equation*}
$$

Proof of the Theorem (II)

From the hodograph transformation

$$
\left\{\begin{array}{l}
\partial_{y}=\frac{2 c}{\rho} \partial_{x} \\
\partial_{s}=\partial_{t}+u \partial_{x}
\end{array}\right.
$$

Substituting into

$$
\begin{aligned}
& \left\{\begin{array}{l}
(\ln \rho)_{s}=-u_{x} \\
-u_{x x}+u+\frac{1}{c}=\rho^{2}
\end{array}\right. \\
& \left(\partial_{t}+u \partial_{x}\right) \ln m=-2 u_{x}
\end{aligned}
$$

or

$$
m_{t}+2 m u_{x}+u m_{x}=0, \quad m=-u_{x x}+u+\frac{1}{c}
$$

Bilinearization to the DP equation

Theorem

The DP equation

$$
m_{t}+3 m u_{x}+u m_{x}=0, \quad m=\frac{1}{a}+u-u_{x x}
$$

is derived from the bilinear equations

$$
\begin{align*}
& \left(D_{x} D_{t}+\frac{1}{a} D_{x}+a D_{t}\right) g \cdot f=0 \tag{11}\\
& \left(\frac{1}{a} D_{x}+1\right) g \cdot f=c F \tag{12}\\
& \left(\frac{1}{2} D_{x} D_{t}-1\right) F \cdot F=-G G, \quad g f=c G \tag{13}
\end{align*}
$$

through a hodograph transformation $\boldsymbol{x}=\boldsymbol{a y}+\ln \frac{g}{f}, \quad \boldsymbol{t}=\boldsymbol{s}$ and dependent variable transformation $u=\left(\ln \frac{g}{f}\right)_{s}$

Semi-discrete Camassa-Holm equation

The bilinear equations of the CH equation

$$
\begin{align*}
& \left(D_{y} D_{s}+\frac{1}{c} D_{y}+2 c D_{s}\right) g \cdot h=0 \tag{14}\\
& \left(\frac{1}{2 c} D_{y}+1\right) g \cdot h=f f \tag{15}\\
& \left(\frac{1}{2} D_{y} D_{s}-1\right) f \cdot f=-g h \tag{16}
\end{align*}
$$

Semi-discrete version of the CH equation

$$
\begin{align*}
& \left((1+a c) D_{s}+a\right) g_{l+1} \cdot h_{l}-\left((1-a c) D_{s}+a\right) g_{l} \cdot h_{l+1}=0 \tag{17}\\
& (a+1 / c) g_{l+1} h_{l}+(a-1 / c) g_{l} h_{l+1}=2 a f_{l+1} f_{l} \tag{18}\\
& \left(\frac{1}{a} D_{s}-1\right) f_{l+1} \cdot f_{l}=-\frac{g_{l+1} h_{l}+g_{l} h_{l+1}}{2} \tag{19}
\end{align*}
$$

Continuous limits for $\boldsymbol{a} \rightarrow \mathbf{0}$ are

$$
\begin{gathered}
(17) / a \rightarrow(14) \\
(18) / 2 a \rightarrow(15) \\
(19) \rightarrow(16)
\end{gathered}
$$

Semi-discrete Camassa-Holm equation

The semi-discrete version of the bilinear equations

$$
\begin{aligned}
& \left((1+a c) D_{s}+a\right) g_{l+1} \cdot h_{l}-\left((1-a c) D_{s}+a\right) g_{l} \cdot h_{l+1}=0 \\
& (a+1 / c) g_{l+1} h_{l}+(a-1 / c) g_{l} h_{l+1}=2 a f_{l+1} f_{l} \\
& \left(\frac{1}{a} D_{s}-1\right) f_{l+1} \cdot f_{l}=-\frac{g_{l+1} h_{l}+g_{l} h_{l+1}}{2}
\end{aligned}
$$

give the following semi-discrete CH equation

$$
\left\{\begin{array}{c}
-2\left(\frac{w_{l+1}-w_{l}}{\delta_{l}}-\frac{w_{l}-w_{l-1}}{\delta_{l-1}}\right)+\delta_{l} \frac{w_{l+1}+w_{l}}{2}+\frac{\delta_{l}}{c} \frac{1-\frac{4 a^{2} c^{2}}{\delta_{l}^{2}}}{1-a^{2} c^{2}} \\
+\delta_{l-1} \frac{w_{l}+w_{l-1}}{2}+\frac{\delta_{l-1}}{c} \frac{1-\frac{4 a^{2} c^{2}}{\delta_{l-1}^{2}}}{1-a^{2} c^{2}}=0 \\
\frac{d \delta_{l}}{d t}=\left(1-\frac{\delta_{l}^{2}}{4}\right)\left(w_{l+1}-w_{l}\right)
\end{array}\right.
$$

through transformations

$$
w_{l}=\left(\ln \frac{g_{l}}{h_{l}}\right)_{s} \quad \delta_{l}=\frac{4 a f_{l+1} f_{l}}{(1 / c+a) g_{l+1} h_{l}+(1 / c-a) g_{l} h_{l+1}}
$$

Integrable self-adaptive mesh scheme for the Camassa-Holm equation

$$
\left\{\begin{array}{l}
\Delta^{2} w_{k}=\frac{1}{\delta_{k}} M\left(\delta_{k} M w_{k}+\frac{1}{c \delta_{k}} \frac{\delta_{k}^{2} / c^{2}-4 a^{2}}{1 / c^{2}-a^{2}}\right) \\
\partial_{t} \delta_{k}=\left(1-\frac{\delta_{k}^{2}}{4}\right) \delta_{k} \Delta w_{k}
\end{array}\right.
$$

where $\Delta \boldsymbol{F}_{\boldsymbol{k}}=\frac{\boldsymbol{F}_{\boldsymbol{k}+\boldsymbol{1}}-\boldsymbol{F}_{\boldsymbol{k}}}{\delta_{k}}, \quad \boldsymbol{M} \boldsymbol{F}_{\boldsymbol{k}}=\frac{\boldsymbol{F}_{\boldsymbol{k}}+\boldsymbol{F}_{k+1}}{2}$.
Time evolution of mesh: Modified forward Euler method and 4th order Runge-Kutta method
First equation: Solve the tridiagonal linear system by using the standard iteration method

Generalization of self-adaptive moving mesh method

- Key idea: the introduction of the hodograph transformation $(x, t) \rightarrow(y, s)$ based on the conservation law.
- Instead of the original PDEs, we consider the numerical solution of the coupled equation in terms of \boldsymbol{y} and s.
- Note that the mesh density $\boldsymbol{\rho}=\boldsymbol{\partial}_{\boldsymbol{x}} / \boldsymbol{\partial}_{\boldsymbol{y}}$ for the \boldsymbol{x}-variable becomes nonuniform and time-dependent, which leads to a self-adaptive moving mesh scheme.
- The integrable discretization of the coupled dispersionless equation will lead to integrable self-adaptive moving mesh method.

General self-adaptive moving mesh methods for the short pulse equation

It was easily shown that the short pulse equation

$$
\left(\sqrt{1+u_{x}^{2}}\right)_{t}-\left(\frac{1}{2} u^{2} \sqrt{1+u_{x}^{2}}\right)_{x}=0
$$

General self-adaptive moving mesh methods for the short pulse equation

It was easily shown that the short pulse equation

$$
\left(\sqrt{1+u_{x}^{2}}\right)_{t}-\left(\frac{1}{2} u^{2} \sqrt{1+u_{x}^{2}}\right)_{x}=0
$$

Letting $\rho=\left(1+u_{x}^{2}\right)^{\mathbf{1 / 2}}$, we can define a hodograph transformation

$$
d y=\rho d x-\frac{1}{2} u^{2} \rho d t, \quad d s=d t
$$

the short pulse equation is transformed into the coupled dispersionless equation

$$
\left\{\begin{array}{l}
u_{y s}=\rho u \\
\rho_{s}+\frac{1}{2}\left(u^{2}\right)_{y}=0
\end{array}\right.
$$

Then we can work on the structure-preserving schemes for the CD equation, which becomes self-adaptive moving mesh methods for the SP equation.

The generalized sine-Gordon equation and the self-adaptive moving method

The generalized sine-Gordon equation

$$
u_{x t}=\left(1+\sigma \partial_{x x}\right) \sin u, \quad u_{x t}-\left(\sigma(\cos u) u_{x}\right)_{x}=\sin u
$$

or

$$
u_{x t}-(\sigma \cos u) u_{x x}-\left(1-\sigma u_{x}^{2}\right) \sin u=0
$$

can be written into a conservative form

$$
\left(\sqrt{1+u_{x}^{2}}\right)_{t}-\left(\sigma \cos u \sqrt{1+u_{x}^{2}}\right)_{x}=0
$$

The generalized sine-Gordon equation and the self-adaptive moving method

The generalized sine-Gordon equation

$$
u_{x t}=\left(1+\sigma \partial_{x x}\right) \sin u, \quad u_{x t}-\left(\sigma(\cos u) u_{x}\right)_{x}=\sin u
$$

or

$$
u_{x t}-(\sigma \cos u) u_{x x}-\left(1-\sigma u_{x}^{2}\right) \sin u=0
$$

can be written into a conservative form

$$
\left(\sqrt{1+u_{x}^{2}}\right)_{t}-\left(\sigma \cos u \sqrt{1+u_{x}^{2}}\right)_{x}=0
$$

Letting $\rho=\left(1+u_{x}^{2}\right)^{1 / 2}$, we can define a hodograph transformation

$$
d y=\rho d x+\sigma \cos u \rho d t, \quad d s=d t
$$

which means

$$
\partial_{y}=\rho \partial_{x} \quad \partial_{s}=\partial_{t}+\cos u \partial_{x}
$$

The generalized sine-Gordon equation and the self-adaptive moving mesh method

$$
u_{x t}-\left(\sigma(\cos u) u_{x}\right)_{x}=\sin u, \quad \partial_{x}\left(\partial_{t}-\sigma \cos u \partial_{x}\right) u=\sin u
$$

becomes

$$
u_{y s}=\rho \sin u
$$

The conservative form of the gsG equation

$$
(\rho)_{t}-(\sigma \rho \cos u)_{x}=0
$$

becomes

$$
\rho_{s}-(\sigma \cos u)_{y}=0
$$

In summary

$$
\left\{\begin{array}{l}
u_{y s}=\rho \sin u \\
\rho_{s}-\sigma(\cos u)_{y}=0
\end{array}\right.
$$

A self-adaptive moving mesh method for the generalized sine-Gordon equation

Semi-discrete generalized sine-Gordon equation

$$
\left\{\begin{array}{l}
\frac{d}{d s}\left(u_{k+1}-u_{k}\right)=\frac{1}{2}\left(x_{k+1}-x_{k}\right)\left(\sin u_{k+1}+\sin u_{k}\right) \\
\frac{d}{d s}\left(x_{k+1}-x_{k}\right)=\sigma\left(\cos u_{k+1}-\cos u_{k}\right)
\end{array}\right.
$$

Self-adaptive moving mesh scheme

$$
\left\{\begin{array}{l}
p_{k}^{n+1}=p_{k}^{n}+\frac{1}{2} \delta_{k}^{n}\left(\sin u_{k+1}^{n}+\sin u_{k}^{n}\right) \Delta t \\
\delta_{k}^{n+1}=\delta_{k}^{n}+\left(\cos u_{k+1}^{n+1}-\cos u_{k}^{n+1}\right) \sigma \Delta t
\end{array}\right.
$$

where $p_{k}^{n}=u_{k+1}^{n}-u_{k}^{n}, \delta_{k}^{n}=x_{k+1}^{n}-x_{k}^{n}$.

General self-adaptive moving mesh methods for the $\mathbf{C H}$ equation

The conservative of the CH equation

$$
\begin{aligned}
m_{t}+2 m u_{x}+m_{x} u=0, \quad m & =\kappa+u-u_{x x} \\
\left(m^{\frac{1}{2}}\right)_{t}+\left(u m^{\frac{1}{2}}\right)_{x} & =0
\end{aligned}
$$

General self-adaptive moving mesh methods for the $\mathbf{C H}$ equation

The conservative of the CH equation

$$
\begin{gathered}
m_{t}+2 m u_{x}+m_{x} u=0, \quad m=\kappa+u-u_{x x} \\
\left(m^{\frac{1}{2}}\right)_{t}+\left(u m^{\frac{1}{2}}\right)_{x}=0
\end{gathered}
$$

Let $\rho=m^{-\frac{1}{2}}$, we can define a hodograph transformation

$$
d y=\rho^{-1} d x-\rho^{-1} u d t, \quad d s=d t
$$

The CH equation is transformed into the following coupled equation

$$
\left\{\begin{array}{l}
(\ln \rho)_{s y}=\rho(\kappa+u)-\rho^{-1} \\
\rho_{s}-u_{y}=0
\end{array}\right.
$$

General self-adaptive moving mesh methods for the DP equation

The conservative of the DP equation

$$
\begin{aligned}
m_{t}+3 m u_{x}+m_{x} u=0, \quad m & =\kappa+u-u_{x x} \\
\left(m^{\frac{1}{3}}\right)_{t}+\left(u m^{\frac{1}{3}}\right)_{x} & =0
\end{aligned}
$$

General self-adaptive moving mesh methods for the DP equation

The conservative of the DP equation

$$
\begin{gathered}
m_{t}+3 m u_{x}+m_{x} u=0, \quad m=\kappa+u-u_{x x} \\
\left(m^{\frac{1}{3}}\right)_{t}+\left(u m^{\frac{1}{3}}\right)_{x}=0
\end{gathered}
$$

Let $\rho=\boldsymbol{m}^{-\frac{1}{3}}$, we can define a hodograph transformation

$$
d y=\rho^{-1} d x-\rho^{-1} u d t, \quad d s=d t
$$

The DP equation is transformed into the following coupled equation

$$
\left\{\begin{array}{l}
(\ln \rho)_{s y}=\rho(\kappa+u)-\rho^{-2} \\
\rho_{s}-u_{y}=0
\end{array}\right.
$$

General self-adaptive moving mesh methods for the b-family equation

The conservative of the b-family equation

$$
\begin{aligned}
m_{t}+b m u_{x}+m_{x} u=0, \quad \boldsymbol{m} & =\kappa+u-u_{x x} \\
\left(m^{\frac{1}{b}}\right)_{t}+\left(u m^{\frac{1}{b}}\right)_{x} & =0
\end{aligned}
$$

General self-adaptive moving mesh methods for the b-family equation

The conservative of the b-family equation

$$
\begin{gathered}
m_{t}+b m u_{x}+m_{x} u=0, \quad m=\kappa+u-u_{x x} \\
\left(m^{\frac{1}{b}}\right)_{t}+\left(u m^{\frac{1}{b}}\right)_{x}=0
\end{gathered}
$$

Let $\boldsymbol{\rho}=\boldsymbol{m}^{-\frac{1}{b}}$, we can define a hodograph transformation

$$
d y=\rho^{-1} d x-\rho^{-1} u d t, \quad d s=d t
$$

The \boldsymbol{b}-family equation is transformed into the following coupled equation

$$
\left\{\begin{array}{l}
(\ln \rho)_{s y}=\rho(\kappa+u)-\rho^{-b+1} \\
\rho_{s}-u_{y}=0
\end{array}\right.
$$

Conclusion and further topics

- A novel numerical method: integrable self-adaptive moving mesh method, is born from integrable discretizations of a class of soliton equations with hodograph transformation
- A self-adaptive moving mesh method is not necessarily to be integrable for integrable equations, which makes the task mcu easier
- A self-adaptive moving mesh method is not designed for integrable equations. It can be designed for other non-integrable equations based on hodograph transformation

Conclusion and further topics

- A novel numerical method: integrable self-adaptive moving mesh method, is born from integrable discretizations of a class of soliton equations with hodograph transformation
- A self-adaptive moving mesh method is not necessarily to be integrable for integrable equations, which makes the task mcu easier
- A self-adaptive moving mesh method is not designed for integrable equations. It can be designed for other non-integrable equations based on hodograph transformation
- Further topic 1: Detailed study and comparison of self-adaptive moving methods for several integrable equations mentioned here
- Further topic 2: Design ans study of self-adaptive moving mesh method for non-integrable nonlinear wave equations

