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Integrable numerical schemes to soliton equation

Semi-discrete NLS equation (Ablowitz-Ladik lattice) to the Nonlinear Schrödinger

(NLS) equation iqt + qxx + 2|q|2q = 0,

i
dqk

dt
+

qk+1 − 2qk + qk−1

h2
+ |qk|2(qk+1 + qk−1) = 0,

where qk ≈ q(kh, t). D.A. Karpeev, C.M. Schober, Math. and Compt. Simul.

56 (2001) 1456

C.M. Schober, Phys. Lett. A 259 (1999) 1401.

Fully discrete sine-Gordon equation uxt = sinu

1

ab
sin

ul+1
k+1 − ul

k+1 − ul+1
k + ul

k

4
= sin

ul+1
k+1 + ul

k+1 + ul+1
k + ul

k

4
.

where ul
k ≈ u(ka, lb).

M. J. Ablowitz, B. M. Herbst, and C. M. Schober, Phys. Rev. Lett. 71, 2683

(1993).

M. J. Ablowitz, B. M. Herbst, and C. M. Schober, J. Comput. Phys. 126, 299

(1996), 131, 354 (1997).
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The Camassa-Holm equation and its short wave model

The Camassa-Holm equation

ut + 2κ2ux − utxx + 3uux = 2uxuxx + uuxxx

mt + 2mux + umx = 0 , m = κ2 + u − uxx

R. Camassa, D.D. Holm, Phys. Rev. Lett. 71 (1993) 1661

Inverse scattering transform, A. Constantin, (2001)

Short wave limit: t → ϵt, x → x/ϵ, u → ϵ2u

The Hunter-Saxton equation

utxx − 2κ2ux + 2uxuxx + uuxxx = 0

Hunter, & Saxton (1991): Nonlinear orientation waves in liquid crystals

Hunter & Zheng (1994): Lax pair, bi-Hamiltonian structure

FMO (2010): Integrable semi- and fully discretizations
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The Degasperis-Procesi equation and its short wave model

The Degasperis-Procesi equation

ut + 3κ3ux − utxx + 4uux = 3uxuxx + uuxxx ,

mt + 3mux + umx = 0 , m = κ3 + u − uxx

A. Degasperis, M. Procesi, (1999)

Degasperis, Holm, Hone (2002)

N -soliton solution, Matsuno (2005)

Short wave limit:

utxx − 3κ3ux + 3uxuxx + uuxxx = 0

utx − 3κ3u +
1

2
(u2)xx = 0

Reduced Ostrovsky equation, L.A. Ostrovsky, Okeanologia 18, 181 (1978).

Vakhnenko equation, V. Vakhnenko, JMP, 40, 2011 (1999)
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The short pulse equation

uxt = u +
1

6
(u3)xx

Schäfer & Wayne(2004): Derived from Maxwell equation on the setting of

ultra-short optical pulse in silica optical fibers.

Sakovich & Sakovich (2005): A Lax pair of WKI type, linked to sine-Gordon

equation through hodograph transformation;

Brunelli (2006) Bi-Hamiltonian structure, Phys. Lett. A 353, 475478

Matsuno (2007): Multisoliton solutions through Hirota’s bilinear method

FMO (2010): Integrable semi- and fully discretizations.
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Complex short pulse equation

Complex short pulse equation

qxt + q +
1

2
(|q|2qx)x = 0

The complex short pulse equation, which can be derived from Maxwell

equation, is more natural and appropriate than short pulse equation in

describing the propagation of the ultra-short pulses. It is an analogue of the

NLS equation for the ultra-short pulses.

It is integrable and and has exact N -envelop soliton solution.

B.-F (2015) Physica D 297, 62-75

B.-F. Feng (UT-Pan American) Self-adaptive moving mesh method October 17, 2015 8 / 42



. . . . . .

Coupled complex short pulse equation

Coupled complex short pulse equation

q1,xt + q1 +
1

2

(
(|q1|2 + B|q2|2)q1,x

)
x
= 0 ,

q2,xt + q2 +
1

2

(
(|q2|2 + B|q1|2)q2,x

)
x
= 0 .

The parameter B is related to the ellipticity angle θ as

B =
2 + 2 sin2 θ

2 + cos2 θ
.

For a linearly birefringent fiber (θ = 0), B = 2
3
, for a circularly birefringent

fiber (θ = π/2), B = 2. Only when B = 1, it is integrable.
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The generalized sine-Gordon equation

The generalized sine-Gordon equation

uxt = (1 + σ∂xx) sinu , σ = ±1

Proposed by A. Fokas through a bi-Hamiltonian method (1995)

Matsuno gave a variety of soliton solutions such as kink, loop and breather

solutions (2011)

For σ = 1, under the short wave limit ū = u/ϵ, x̄ = (x− t)/ϵ, t̄ = ϵt, it

converges to the short pulse equation.

Under the long wave limit ū = u, x̄ = ϵx, t̄ = t/ϵ, it converges to the

sine-Gordon equation.
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The link of the short pulse equation to the coupled

dispersioless equation

uxt = u +
1

2
(u2ux)x , ∂x(∂t −

1

2
u2∂x)u = u .

It can be easily shown that(√
1 + u2

x

)
t

−
(
1

2
u2
√
1 + u2

x

)
x

= 0

Letting ρ =
(
1 + u2

x

)1/2
, we can define a hodograph transformation

dy = ρdx −
1

2
u2ρdt , ds = dt ,

or

∂x = ρ−1∂y, ∂t = ∂s +
1

2
u2ρ−1∂y

which leads to 
uys = ρu,

ρs +
1

2
(u2)y = 0

Coupled dispersionless (CD) equation : Konno K, Oono H. J Phys Soc Jpn 63,

377 (1994)
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Lax pairs for the SP and the CD equations

The Lax pair for the CD equation

Ψy = UΨ, Ψs = V Ψ ,

U = −iλ

(
ρ uy

uy −ρ

)
, V =

(
i

4λ
−u

2
u
2

− i
4λ

)
The compatibility condition Ut − Vx − UV + V U = 0 gives the CD equation.

Then we get the Lax pair for the SP equation through the hodograph

transformation ∂y = ρ∂x , ∂s = ∂t − 1/2u2∂x

Ψx = UΨ, Ψt = V Ψ ,

U = −iλ

(
1 ux

ux −1

)

V =

(
i

4λ
− iλ

2
u2 − iλ

2
u2ux − u

2

− iλ
2
u2ux + u

2
− i

4λ
+ iλ

2
u2

)
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Bilinear equations of the short pulse equation

.
Theorem
..

......

The bilinear equations

DsDyf · g = fg , D2
sf · f =

1

2
g2 ,

where

Dn
s D

m
y f · g =

(
∂

∂s
−

∂

∂s′

)n ( ∂

∂y
−

∂

∂y′

)m

f(y, s)g(y′, s′)|y=y′,s=s′

give the short pulse equation

uxt = u +
1

2

(
u2ux

)
x

through the hodograph and dependent variable transformations

x = y − 2(ln f)s , t = s , u =
g

f

B.-F. Feng (UT-Pan American) Self-adaptive moving mesh method October 17, 2015 13 / 42
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Proof of the Theorem (I)

Dyf · g = fyg − fgy , DsDyf · g = fsyg − fsgy − fygs + fgsy ,

DsDyf · g
f2

=

(
g

f

)
sy

+ 2(ln f)ys
g

f

D2
sf · f = 2fsyf − 2fsfy ,

D2
sf · f
f2

= 2(ln f)ss


(
g

f

)
sy

= (1 − 2(ln f)ys)
g

f
,

2(ln f)ss =
1

2

g2

f2

Let u = g/f , ρ = 1 − 2(ln f)ys, we have
uys = ρu,

ρs +
1

2
(u2)y = 0
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Proof of the Theorem (II)

Recall the hodograph transformation

x = y − 2(ln f)s , t = s ,

∂x

∂y
= 1 − 2(ln f)ys = ρ

∂x

∂s
= −2(ln f)ss = −

1

2
u2

or

∂y = ρ∂x , ∂s = ∂t −
1

2
u2∂x

So the coupled dispersionless equation becomes

∂x(∂t −
1

2
u2∂x)u = u

which is exactly the short pulse equation.
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Multi-soliton solution to the short pulse equation

The short pulse equation admits multi-soliton solution

f =

∣∣∣∣∣ A I

−I B

∣∣∣∣∣
2N×2N

, g =

∣∣∣∣∣∣∣
A I ΦT

−I B 0T

0 C 0

∣∣∣∣∣∣∣
(2N+1)×(2N+1)

,

where the elements defined respectively by

aij =
1

2(p−1
i + p−1

j )
eξi+ξj , bij =

αiαj

2(p−1
j + p−1

i )

Φ = (eξ1 , eξ2 , · · · , eξN ) , C = −(α1, α2, · · · , αN) ,

with ξi = piy + 1
pi
s + ξi0
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Integrable semi-discrete short pulse equation

.
Theorem
..

......

By discrete hodograph transformation xk = 2ka − 2(ln fk)s, t = s

and dependent variable transformations uk = gk
fk

, the bilinear equations{
1
a
Ds(gk+1 · fk − gk · fk+1) = gk+1fk + gkfk+1 ,

D2
sfk · fk = 1

2
g2
k .

give an integrable semi-discrete short pulse equation{
d
ds
(uk+1 − uk) = 1

2
(xk+1 − xk)(uk+1 + uk) ,

d
ds
(xk+1 − xk) = −1

2

(
u2
k+1 − u2

k

)
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Proof of the semi-discrete SP equation (I)

Denote fk = f(ka, s), gk = g(ka, s), and consider

DsDyf · g = fsyg − fsgy − fygs + fgsy ,

→
fk+1,s − fk,s

a
gk − fk,s

gk+1 − gk

a

−gk,s
fk+1 − fk

a
+

gk+1,s − gk,s

a
fk

=
1

a
(gk+1,sfk − fk,sgk+1 − gk,sfk+1 + gkfk+1,s)

=
1

a
Ds(gk+1 · fk − gk · fk+1)

we could propose{
1
a
Ds(gk+1 · fk − gk · fk+1) = gk+1fk + gkfk+1 ,

D2
sfk · fk = 1

2
gkgk .
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Proof of the semi-discrete SP equation (II)


1

a
Ds(gk+1 · fk − gk · fk+1) = gk+1fk + gkfk+1 ,

D2
sfk · fk =

1

2
g2
k ,

The second bilinear equation can be rewritten as

(ln fk)ss =
1

4

g2
k

f2
k

=
1

4
q2
k .

From the hodograph transformation, we have

xk+1 − xk = 2a − 2

(
ln

fk+1

fk

)
s

,

it immediately follows

d

ds
(xk+1 − xk) = −

1

2

(
q2
k+1 − q2

k

)
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Proof of the semi-discrete SP equation (III)

Dividing both sides by fk+1fk, the first bilinear equations can be calculated out

by (
gk+1,s

fk+1

−
gk,s

fk

)
−

gk+1fk,s − gkfk+1,s

fk+1fk

= a

(
gk+1

fk+1

+
gk

fk

)
,

which is recast into(
gk+1

fk+1

−
gk

fk

)
s

=

(
a −

(
ln

fk+1

fk

)
s

)(
gk+1

fk+1

+
gk

fk

)
.

With the use of discrete hodograph and dependent variable transformations, we

have
d

ds
(qk+1 − qk) =

1

2
(xk+1 − xk)(qk+1 + qk) . (1)
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Integrable self-adaptive moving mesh method for the short

pulse equation

We apply the semi-implicit Euler scheme to the semi-discrete short pulse

equation {
d
ds
(uk+1 − uk) = 1

2
δk(uk+1 + uk) ,

d
ds
(xk+1 − xk) = −1

2
(u2

k+1 − u2
k) ,

as follows {
pn+1
k = pn

k + 1
2
δnk (u

n
k+1 + un

k )∆t ,

δn+1
k = δnk − 1

2

(
(un+1

k+1)
2 − (un+1

k )2
)
∆t ,

where pn
k = un

k+1 − un
k , δ

n
k = xn

k+1 − xn
k .

Although the semi-implicit Euler is a first-order integrator, it is

symplectic which is an appropriate for the Hamiltonian system

The mesh is evolutive and self-adaptive, so we name it self-adaptive

moving mesh method.

B.-F. Feng (UT-Pan American) Self-adaptive moving mesh method October 17, 2015 21 / 42



. . . . . .

Integrable self-adaptive moving mesh method for the short

pulse equation

We apply the semi-implicit Euler scheme to the semi-discrete short pulse

equation {
d
ds
(uk+1 − uk) = 1

2
δk(uk+1 + uk) ,

d
ds
(xk+1 − xk) = −1

2
(u2

k+1 − u2
k) ,

as follows {
pn+1
k = pn

k + 1
2
δnk (u

n
k+1 + un

k )∆t ,

δn+1
k = δnk − 1

2

(
(un+1

k+1)
2 − (un+1

k )2
)
∆t ,

where pn
k = un

k+1 − un
k , δ

n
k = xn

k+1 − xn
k .

Although the semi-implicit Euler is a first-order integrator, it is

symplectic which is an appropriate for the Hamiltonian system

The mesh is evolutive and self-adaptive, so we name it self-adaptive

moving mesh method.

B.-F. Feng (UT-Pan American) Self-adaptive moving mesh method October 17, 2015 21 / 42



. . . . . .

The complex short pulse equation and the complex coupled

dispersionless equation

qxt + q +
1

2

(
|q|2qx

)
x
= 0 ,

gives (√
1 + |q|2x

)
t

+

(
1

2
|q|2

√
1 + |q|2x

)
x

= 0 .

This leads to a hodograph transformation by defining ρ =
√
1 + |q|2x. As a

result, we obtain the so-called complex coupled dispersionless equation
qys = ρq,

ρs +
1

2
(|q|2)y = 0

Konno K, Kakuhata H. J Phys Soc Jpn 1995, 64, 2707; 1996;65:713.

B.-F. Feng (UT-Pan American) Self-adaptive moving mesh method October 17, 2015 22 / 42



. . . . . .

Bilinear equations of the complex short pulse equation

.
Theorem
..

......

The complex short pulse equation

qxt + q +
1

2

(
|q|2qx

)
x
= 0

can be derived from bilinear equations

DsDyf · g = fg , D2
sf · f =

1

2
|g|2 ,

through the hodograph and dependent variable transformations

x = y − 2(ln f)s , t = −s , q =
g

f
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Integrable semi-discrete complex short pulse equation

.
Theorem
..

......

The semi-discrete analogue of the complex short pulse equation{
d
ds

(qk+1 − qk) = 1
2
(xk+1 − xk)(qk+1 + qk) ,

d
ds

(xk+1 − xk) = −1
2

(
|qk+1|2 − |qk|2

)
is decomposed into bilinear equations:{

1
a
Ds(gk+1 · fk − gk · fk+1) = gk+1fk + gkfk+1 ,

D2
sfk · fk = 1

2
gkḡk .

through discrete hodograph transformation and dependent variable

transformations xk = 2ka − 2(ln fk)s, t = −s , qk = gk

fk
.
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Integrable semi-discrete coupled complex short pulse equation

.
Theorem
..

......

The semi-discrete coupled complex short pulse equation
d
ds

(q1,k+1 − q1,k) = 1
2
(xk+1 − xk)(q1,k+1 + q1,k) ,

d
ds

(q2,k+1 − q2,k) = 1
2
(xk+1 − xk)(q2,k+1 + q2,k) ,

d
ds

(xk+1 − xk) = −1
2

∑
j(|qj,k+1|2 − |qj,k|2) ,

is decomposed into bilinear equations:{
1
a
Ds(g

(i)
k+1 · fk − g

(i)
k · fk+1) = g

(i)
k+1fk + g

(i)
k fk+1 , i = 1, 2

D2
sfk · fk = 1

2

(
|g(1)

k |2 + |g(2)
k |2

)
.

through discrete hodograph transformation and dependent variable

transformations xk = 2ka − 2(ln fk)s, t = −s, qi,k =
g
(i)
k

gk
.
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. . . . . .

Integrable self-adaptive moving mesh method for the complex

short pulse equation

We apply the semi-implicit Euler scheme to the semi-discrete complex

short pulse equation{
d
dt
(qk+1 − qk) = 1

2
δk(qk+1 + qk) ,

d
dt
(xk+1 − xk) = −1

2
(|q|2k+1 − |q|2k) ,

as follows {
pn+1
k = pn

k + 1
2
δnk (q

n
k+1 + qnk )∆t ,

δn+1
k = δnk − 1

2

(
(|q|n+1

k+1)
2 − (|q|n+1

k )2
)
∆t ,

where pn
k = qnk+1 − qnk , δ

n
k = xn

k+1 − xn
k .
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. . . . . .

Bilinearization to the CH equation

.
Theorem (F-Maruno-Ohta (2008))
..

......

The CH equation

mt + 2mux + umx = 0 , m =
1

c
+ u − uxx

is derived from the bilinear equations

(DyDs +
1

c
Dx + 2cDt)g · h = 0 (2)

(
1

2c
Dy + 1)g · h = ff (3)

(
1

2
DyDs − 1)f · f = −gh (4)

through a hodograph transformation x = 2cy + ln g
h
, t = s and dependent

variable transformation u =
(
ln g

h

)
s
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Proof of the Theorem (I)

(ln gh)ys + ((ln
g

h
)y + 2c)((ln

g

h
)t +

1

c
) − 2 = 0 , (5)

1

2c
(ln

g

h
)y + 1 =

ff

gh
, (6)

(ln f)ys − 1 = −
gh

ff
(7)

(ln
gh

ff
)ys + ((ln

g

h
)y + 2c)((ln

g

h
)t +

1

c
) = 2

gh

ff
(8)

Let ρ = gh/f2, differentiating Eq. (6) with respect to s

1

2c
uy = −

ρs

ρ2
, (9)

Combining (8) with (6)

(ln ρ)ys +
2c

ρ
(u +

1

c
) = 2ρ (10)
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. . . . . .

Proof of the Theorem (II)

From the hodograph transformation{
∂y = 2c

ρ
∂x ,

∂s = ∂t + u∂x .

Substituting into {
(ln ρ)s = −ux,

−uxx + u + 1
c
= ρ2 .

(∂t + u∂x) lnm = −2ux ,

or

mt + 2mux + umx = 0 , m = −uxx + u +
1

c
.
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Bilinearization to the DP equation

.
Theorem
..

......

The DP equation

mt + 3mux + umx = 0 , m =
1

a
+ u − uxx

is derived from the bilinear equations

(DxDt +
1

a
Dx + aDt)g · f = 0 (11)

(
1

a
Dx + 1)g · f = cF (12)

(
1

2
DxDt − 1)F · F = −GG, gf = cG (13)

through a hodograph transformation x = ay + ln g
f
, t = s and dependent

variable transformation u =
(
ln g

f

)
s
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. . . . . .

Semi-discrete Camassa-Holm equation

The bilinear equations of the CH equation

(DyDs +
1

c
Dy + 2cDs)g · h = 0 (14)

(
1

2c
Dy + 1)g · h = ff (15)

(
1

2
DyDs − 1)f · f = −gh (16)

Semi-discrete version of the CH equation

((1 + ac)Ds + a)gl+1 · hl − ((1 − ac)Ds + a)gl · hl+1 = 0 (17)

(a + 1/c)gl+1hl + (a − 1/c)glhl+1 = 2afl+1fl (18)

(
1

a
Ds − 1)fl+1 · fl = −

gl+1hl + glhl+1

2
(19)

Continuous limits for a → 0 are

(17)/a → (14)

(18)/2a → (15)

(19) → (16)
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. . . . . .

Semi-discrete Camassa-Holm equation

The semi-discrete version of the bilinear equations

((1 + ac)Ds + a)gl+1 · hl − ((1 − ac)Ds + a)gl · hl+1 = 0

(a + 1/c)gl+1hl + (a − 1/c)glhl+1 = 2afl+1fl

(
1

a
Ds − 1)fl+1 · fl = −

gl+1hl + glhl+1

2

give the following semi-discrete CH equation



−2

(
wl+1 − wl

δl
−

wl − wl−1

δl−1

)
+ δl

wl+1 + wl

2
+

δl

c

1 −
4a2c2

δ2
l

1 − a2c2

+δl−1

wl + wl−1

2
+

δl−1

c

1 −
4a2c2

δ2
l−1

1 − a2c2
= 0 ,

d δl

d t
=

(
1 −

δ2
l

4

)
(wl+1 − wl)

through transformations

wl = (ln
gl

hl

)s δl =
4afl+1fl

(1/c + a)gl+1hl + (1/c − a)glhl+1
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Integrable self-adaptive mesh scheme for the Camassa-Holm

equation


∆2wk =

1

δk
M

(
δkMwk +

1

cδk

δ2k/c
2 − 4a2

1/c2 − a2

)
,

∂tδk =

(
1 −

δ2k
4

)
δk∆wk ,

where ∆Fk =
Fk+1−Fk

δk
, MFk =

Fk+Fk+1

2
.

Time evolution of mesh: Modified forward Euler method and 4th order

Runge-Kutta method

First equation: Solve the tridiagonal linear system by using the standard

iteration method
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Generalization of self-adaptive moving mesh method

Key idea: the introduction of the hodograph transformation

(x, t) → (y, s) based on the conservation law.

Instead of the original PDEs, we consider the numerical solution of

the coupled equation in terms of y and s.

Note that the mesh density ρ = ∂x/∂y for the x-variable becomes

nonuniform and time-dependent, which leads to a self-adaptive

moving mesh scheme.

The integrable discretization of the coupled dispersionless equation

will lead to integrable self-adaptive moving mesh method.

B.-F. Feng (UT-Pan American) Self-adaptive moving mesh method October 17, 2015 34 / 42



. . . . . .

General self-adaptive moving mesh methods for the short pulse

equation

It was easily shown that the short pulse equation(√
1 + u2

x

)
t

−
(
1

2
u2
√
1 + u2

x

)
x

= 0

Letting ρ =
(
1 + u2

x

)1/2
, we can define a hodograph transformation

dy = ρdx −
1

2
u2ρdt , ds = dt ,

the short pulse equation is transformed into the coupled dispersionless equation
uys = ρu,

ρs +
1

2
(u2)y = 0

Then we can work on the structure-preserving schemes for the CD equation,

which becomes self-adaptive moving mesh methods for the SP equation.
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The generalized sine-Gordon equation and the self-adaptive

moving method

The generalized sine-Gordon equation

uxt = (1 + σ∂xx) sinu , uxt − (σ(cosu)ux)x = sinu

or

uxt − (σ cosu)uxx − (1 − σu2
x) sinu = 0

can be written into a conservative form(√
1 + u2

x

)
t

−
(
σ cosu

√
1 + u2

x

)
x

= 0

Letting ρ =
(
1 + u2

x

)1/2
, we can define a hodograph transformation

dy = ρdx + σ cosuρdt , ds = dt ,

which means

∂y = ρ∂x ∂s = ∂t + cosu∂x
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. . . . . .

The generalized sine-Gordon equation and the self-adaptive

moving mesh method

uxt − (σ(cosu)ux)x = sinu , ∂x(∂t − σ cosu∂x)u = sinu

becomes

uys = ρ sinu

The conservative form of the gsG equation

(ρ)t − (σρ cosu)x = 0

becomes

ρs − (σ cosu)y = 0

In summary {
uys = ρ sinu,

ρs − σ(cosu)y = 0
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A self-adaptive moving mesh method for the generalized

sine-Gordon equation

Semi-discrete generalized sine-Gordon equation{
d
ds
(uk+1 − uk) = 1

2
(xk+1 − xk)(sinuk+1 + sinuk) ,

d
ds
(xk+1 − xk) = σ(cosuk+1 − cosuk) ,

Self-adaptive moving mesh scheme{
pn+1
k = pn

k + 1
2
δnk (sinun

k+1 + sinun
k )∆t ,

δn+1
k = δnk +

(
cosun+1

k+1 − cosun+1
k

)
σ∆t ,

where pn
k = un

k+1 − un
k , δ

n
k = xn

k+1 − xn
k .
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General self-adaptive moving mesh methods for the CH

equation

The conservative of the CH equation

mt + 2mux + mxu = 0, m = κ + u − uxx(
m

1
2

)
t
+
(
um

1
2

)
x
= 0

Let ρ = m− 1
2 , we can define a hodograph transformation

dy = ρ−1dx − ρ−1udt, ds = dt ,

The CH equation is transformed into the following coupled equation{
(ln ρ)sy = ρ(κ + u) − ρ−1,

ρs − uy = 0
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General self-adaptive moving mesh methods for the DP

equation

The conservative of the DP equation

mt + 3mux + mxu = 0, m = κ + u − uxx(
m

1
3

)
t
+
(
um

1
3

)
x
= 0

Let ρ = m− 1
3 , we can define a hodograph transformation

dy = ρ−1dx − ρ−1udt, ds = dt ,

The DP equation is transformed into the following coupled equation{
(ln ρ)sy = ρ(κ + u) − ρ−2,

ρs − uy = 0
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General self-adaptive moving mesh methods for the b-family

equation

The conservative of the b-family equation

mt + bmux + mxu = 0, m = κ + u − uxx(
m

1
b

)
t
+
(
um

1
b

)
x
= 0

Let ρ = m− 1
b , we can define a hodograph transformation

dy = ρ−1dx − ρ−1udt, ds = dt ,

The b-family equation is transformed into the following coupled equation{
(ln ρ)sy = ρ(κ + u) − ρ−b+1,

ρs − uy = 0
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. . . . . .

Conclusion and further topics

A novel numerical method: integrable self-adaptive moving mesh method, is

born from integrable discretizations of a class of soliton equations with

hodograph transformation

A self-adaptive moving mesh method is not necessarily to be integrable for

integrable equations, which makes the task mcu easier

A self-adaptive moving mesh method is not designed for integrable

equations. It can be designed for other non-integrable equations based on

hodograph transformation

Further topic 1: Detailed study and comparison of self-adaptive moving

methods for several integrable equations mentioned here

Further topic 2: Design ans study of self-adaptive moving mesh method for

non-integrable nonlinear wave equations
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